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Abstract: In this study, we examined the anti-tumor effects of heat-killed Bifidobacterium and Lacto-
bacillus strains on human colorectal carcinoma RKO cells in in vitro and in vivo xenograft models.
First, the cytotoxic and apoptotic effects of 11 different strains were examined using an MTT assay
and flow cytometry, respectively. Then, xenograft BALB/c nude mice were implanted with RKO
cells and orally administered with single or mixed heat-killed bacterial strains to examine their
inhibitory effects on tumor growth. Additionally, the levels of cleaved caspase-9, -3, and -7 and
PARP in tumor tissues were analyzed using Western blotting or immunohistochemistry staining. The
results showed that RKO cells were highly susceptible to heat-killed B. bifidum MG731 and L. reuteri
MG5346 and that L. casei MG4584 induced apoptosis to a greater extent than other strains. The oral
administration of individual MG731, MG5346, or MG4584 significantly delayed tumor growth, and
mixtures of MG5346 and MG4584 or MG731, MG5346, and MG4584 synergistically inhibited the
tumor growth in the xenograft model. The expression of cleaved caspase-3, -7, and -9 and PARP in
the tumor tissues was increased in Western blotting, and the expression of cleaved caspase-3 and
PARP in immunohistochemistry staining was also increased. Therefore, we suggest that the use
of the combination of MG5346 and MG4584 as parabiotics could effectively inhibit the growth of
colorectal cancer.

Keywords: colorectal cancer; parabiotics; xenograft; apoptosis

1. Introduction

Parabiotics are non-viable microbial cells, crude cell extracts, or inactivated probi-
otics that confer benefits on human or animal consumers when administered in adequate
amounts [1]. Heat-killed Bifidobacterium or Lactobacillus are representative parabiotic strains
that reportedly exert anti-inflammatory, antibacterial, and immunomodulatory effects [2–4].
Parabiotics can be an alternative to probiotics for high-risk patients or those with under-
lying conditions that make it difficult to take live bacteria [5,6]. Compared to probiotics,
parabiotics have characteristics such as a safe profile, long shelf life, stability within the
digestive system, resistance to hydrolysis, and non-toxicity [7]. Recently, as interest in
the application of parabiotics as pharmaceuticals has increased, research on the use of
parabiotics for cancer prevention and treatment has been continuous [8]. Many in vitro
studies have reported that heat-killed bacteria show significant cytotoxicity in cancer cells
via caspase-mediated apoptosis [9]. Heat-killed L. plantarum I-UL4, L. brevis, and L. paraca-
sei exhibit significant selective cytotoxicity in breast and colorectal cancer (CRC) cells by
inhibiting proliferation and inducing apoptosis [10,11]. In particular, heat-killed L. brevis
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and L. paracasei inhibit the growth of human colorectal HT-29 cells through the induction
of apoptosis [12]. Cell-free supernatants of B. bifidum are effective in combating cancer
cells and are associated with a substantial improvement in gastrointestinal cancer [13]. In
addition to surgery, radiotherapy, and chemotherapy, parabiotics can be one of the major
alternatives for treating various cancers.

Colorectal cancer is the third most common cancer in the world, with 1.80 million
reported cases and an estimated 881,000 deaths in 2018, according to the World Health
Organization 2019 report [12]. Current chemotherapy drugs for CRC such as oxaliplatin
and 5-fluorouracil (5-Fu) come with a variety of undesirable side effects, such as diarrhea,
bone marrow suppression, peripheral neuropathy, and cardiotoxicity [14,15]. Parabiotics
distinguish between normal cells and cancer cells by modulating the proliferation of normal
cells but driving apoptosis in cancerous cells.

The induction of apoptosis in cancer cells is mediated by the activation of several
signaling molecules and caspases. Apoptosis can be initiated either through the extrinsic
or intrinsic pathway. The extrinsic pathway begins with the binding of TNF-α to TNFR1
or interaction between Fas and FasL, which leads to the activation of caspase-8 through
membrane-associated proteins TNF receptor-associated death domain (TRADD) and Fas-
associated death domain protein (FADD) [16]. The intrinsic pathway is triggered by
endogenous stimuli, such as DNA damage and oxidative stress. It is initiated by the
release of cytochrome c from the mitochondrial intermembrane space into the cytoplasm,
which leads to the cleavage and activation of a caspase cascade, specifically caspase-9, -3,
and -7. Poly-ADP-ribose polymerase (PARP) is cleaved by caspase-3 and -7 and induces
apoptosis [17].

This present study aimed to investigate the therapeutic possibilities of heat-killed
Lactobacillus strains against human colorectal carcinoma. We initially used 11 different heat-
killed Bifidobacterium and Lactobacillus strains to screen for cytotoxicity and apoptotic activity
against human colorectal carcinoma RKO cells. In addition, we investigated the anti-tumor
effects of selected heat-killed Bifidobacterium and Lactobacillus strains in xenograft animal
models implanted with RKO cells. Moreover, we attempted to elucidate the molecular
mechanism of the anti-tumor activity of heat-killed Bifidobacterium and Lactobacillus strains.

2. Materials and Methods
2.1. Bacterial Strain Preparation

Heat-killed bacterial strains were provided as powder by Mediogen Co., Ltd. (Jecheon,
Korea). Cell pellets were obtained from bacterial cultures by centrifugation at 5000× g
for 5 min and washed three times with distilled water. The bacteria were heat-killed at
100 ◦C for 30 min and then freeze-dried and stored at −20 ◦C until they were used. The
following 11 strains were used: B. bifidum MG731, B. breve MG729, L. bulgaricus MG515, L.
casei MG311, L. casei MG4584, L. gasseri MG4514, L. plantarum MG4215, L. reuteri MG5346, L.
rhamnosus MG316, L. rhamnosus MG5200, and Streptococcus thermophilus MG5140.

2.2. Cell Culture

Human colorectal carcinoma RKO cells were obtained from American Type Cul-
ture Collection (ATCC; Manassas, VA, USA) and incubated in Dulbecco’s Modified Ea-
gle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% peni-
cillin/streptomycin at 37 ◦C in a humidified atmosphere of 5% CO2. DMEM, FBS, and
penicillin/streptomycin were purchased from Gibco (Grand Island, NY, USA).

2.3. Cell Cytotoxicity

The cytotoxicity of heat-killed bacterial strains against RKO cells was determined by
measuring the cell viability using an MTT assay. RKO cells were plated in 96-well plates
at a density of 5 × 103 cells/well and incubated for 24 h. After the incubation, the cells
were treated with the powder of heat-killed bacterial strains (1 × 108 or 1 × 109 cells/mL)
for 24 h. Then, cells were added to MTT solution (1 mg/mL) and incubated for 4 h. The
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supernatant was then removed and 100 µL of dimethyl sulfoxide (DMSO; Tokyo Chemical
Industry Co., Ltd., Tokyo, Japan) was added to each well to dissolve the formazan crystals.
Absorbance was measured using a microplate reader (BMG Labtech, Offenburg, Germany)
at 450 nm.

2.4. Cell Morphology

RKO cells were seeded at a density of 1 × 106 cells/well in 6-well plates. After
24 h of incubation, cells were treated with the powder of heat-killed bacterial strains
(1 × 109 cells/mL) for 24 h. Cell morphology was then observed under a light microscope
(200×; Nikon Eclipse TS100, Nikon, Tokyo, Japan).

2.5. Annexin V-FITC and Propidium Iodide Staining Assay

Cell apoptosis was detected using the FITC Annexin V Apoptosis Detection Kit I (BD
Biosciences, San Diego, CA, USA). Briefly, RKO cells were cultured (1 × 106 cells/well)
overnight in 6-well plates. The cells were then treated with the powder of heat-killed
bacterial strains (1 × 109 cells/mL) for 24 h, collected, and added to Annexin V–FITC
and propidium iodide (PI). After incubation for 15 min at room temperature in the dark,
cells were immediately analyzed by a flow cytometer (NovoCyte Flow Cytometer, ACEA
Biosciences Inc., San Diego, CA, USA). Four different cell populations were easily dis-
tinguished: unlabeled cells (live cells), cells stained with Annexin V–FITC only (early
apoptotic cells), cells stained with PI (dead cells), and cells stained with both Annexin
V—FITC and PI (late apoptotic cells).

2.6. Human Colorectal Cancer Xenografts in BALB/c Nude Mice

Animal experiments were conducted in accordance with the National Research Coun-
cil’s Guide (IACUC, Seoul, Korea) for the Care and Use of Laboratory Animals. The
experimental protocol was approved by the Animal Experiments Committee of Duksung
Women’s University (permit number: 2021-005-005, approval date: 1 June 2021). BALB/c
nude mice (female, five weeks old; Raonbio Co. Ltd., Seoul, Korea) were used as xenograft
animal models. Mice were individually accommodated in a pathogen-free controlled en-
vironment (23–27 ◦C and 45 ± 5% humidity under a 12 h day/12 h night cycle). Mice
were fed at random with standard laboratory chow and were provided with water ad
libitum. RKO cells (1 × 106 cells/mouse) were subcutaneously injected into the back, next
to the right hind leg. The powder of heat-killed bacterial strains was dissolved in drinking
water and administered orally every day for 3 weeks. Mice were randomly assigned to the
following six groups (n = 8/group): (1) control group: drinking water; (2) MG731 group:
B. bifidum MG731 (1 × 109 cells/mouse, this choice of the concentration was based on
in vitro studies); (3) MG5346 group: L. reuteri MG5346 (1 × 109 cells/mouse); (4) MG4584
group: L. casei MG4584 (1 × 109 cells/mouse); (5) 2Mix group: mixture of L. reuteri MG5346
(1 × 109 cells/mouse) and L. casei MG4584 (1 × 109 cells/mouse); (6) 3Mix group: mixture
of B. bifidum MG731 (1 × 109 cells/mouse), L. reuteri MG5346 (1 × 109 cells/mouse), and L.
casei MG4584 (1 × 109 cells/mouse). Tumors were identified and measured every other day
using a standard caliper; tumor volume was calculated as [tumor length (mm) × tumor
width (mm)2]/2, as previously described [18,19]. After the tumor volume had reached
2000 mm3, animals were euthanized and tumors were harvested.

2.7. Western Blot Analysis

The levels of apoptosis-related proteins in tumor tissue were determined by Western
blot analysis [18]. The specimens were lysed with an extraction buffer (Intron Biotechnology,
Seoul, Korea) to extract proteins, and protein concentration was determined by Coomassie
(Bradford) Protein Assay (genDEPOT, Katy, TX, USA). The proteins were separated by
electrophoresis and transferred onto nitrocellulose membranes (0.45-µM pore size, Merck
Millipore, Burlington, MA, USA). The membranes were blotted with the following primary
and secondary antibodies: Apoptosis Sampler Kit (#9915), anti-caspase-8 Ab (#9746), anti-
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GAPDH (#5174), anti-rabbit IgG (#7074), and anti-mouse IgG (#7076), all obtained from
Cell Signaling Technology (CST, Danvers, MA, USA). Proteins were visualized using
chemiluminescence detection (FluorChem E system, ProteinSimple, San Jose, CA, USA)
and quantified using the ImageJ program (National Institutes of Health, Bethesda, MD,
USA). The expression levels relative to GAPDH were determined.

2.8. Immunohistochemistry (IHC)

Sections were stained following standard methods [18]. Tumor tissues excised from
mice were frozen with Frozen Section Compound (Leica, Hesse, Germany) and stored at
−80 ◦C. The tumor tissue blocks were cut into 4 µm-thick sections. The sections were then
incubated overnight at 4 ◦C with anti-cleaved caspase-3 (#9664, CST) and anti-cleaved
PARP antibodies (#5625, CST) at dilutions of 1:500 and 1:50, respectively, in TBST. The slices
were incubated with the secondary antibody, 1:100 mouse anti-rabbit IgG (#7074, CST), at
room temperature for 1 h. The slices were then stained with DAB (Vector Laboratories,
Burlingame, CA, USA) and visualized under a microscope (200× or 400×).

2.9. Statistical Analysis

All data were obtained in triplicate and presented as mean ± standard deviation (SD).
Statistical analyses were performed using one-way analysis of variance (ANOVA) with
Duncan’s multiple comparisons. Data were analyzed with SPSS v22 (IBM Corp., Armonk,
NY, USA). The values of p < 0.05 were regarded statistically significant.

3. Results
3.1. Cytotoxic Effect of Heat-Killed Bifidobacterium and Lactobacillus Bacterial Strains on Human
Colorectal Carcinoma RKO Cells

The viability of RKO cells was significantly decreased by 1 × 109 cells/mL of heat-
killed B. bifidum MG731 (to 37.66%) and L. reuteri MG5346 (to 54.39%), which was supported
by microscopic observations (Figure 1). The same concentrations of L. bulgaricus MG515, L.
casei MG311, L. casei MG4584, and L. gasseri MG4514 showed moderate cytotoxic effects on
RKO cells (Figure 1b).

3.2. Apoptotic Effect of Heat-Killed Bifidobacterium and Lactobacillus Strains on RKO Cells

Total apoptosis (%), defined as the sum of early apoptosis (%) and late apoptosis (%)
(the Annexin V+/PI− and Annexin V+/PI+ quadrants, respectively, in Figure 2a), was
dramatically increased by 1 × 109 cells/mL of L. rhamnosus MG5200 (to 15.48%), L. gasseri
MG4514 (to 14.69%), and L. casei MG4584 (to 12.50%) (Figure 2b). The other strains, except
for L. casei MG311, also induced apoptosis to some degree.

3.3. Anti-Tumor Effects of Heat-Killed Bifidobacterium and Lactobacillus Strains in Xenograft
Model Bearing RKO Cells

To confirm the anti-tumor effect of heat-killed Bifidobacterium and Lactobacillus, we
orally administered 1 × 109 cells/mouse of B. bifidum MG731, L. reuteri MG5346, L. casei
MG4584, respectively, in single-strain groups of xenograft models. The 2Mix group was
administered a mixture of L. reuteri MG5346 (1 × 109 cells/mouse) and L. casei MG4584
(1 × 109 cells/mouse), and the 3Mix group was administered a mixture of B. bifidum MG731
(1 × 109 cells/mouse), L. reuteri MG5346 (1 × 109 cells/mouse), and L. casei MG4584
(1 × 109 cells/mouse). All the selected heat-killed Bifidobacterium and Lactobacillus strains
and their mixtures significantly inhibited tumor growth in comparison with drinking water
at day 19 (Figure 3a–c). In particular, the tumor volume was 1018.45 ± 52.59 mm3 in the
MG731 group, 1095.08 ± 83.58 mm3 in the MG5346 group, 1050.56 ± 46.22 mm3 in the
MG4584 group, 493.53 ± 52.19 mm3 in the 2Mix group, and 447.35 ± 104.96 mm3 in the
3Mix group (Figure 3b). Interestingly, the tumor volume in the 2Mix and 3Mix groups
was dramatically reduced (by 41% and 35%, respectively) in comparison with the control
group (p < 0.05). The MG4584 group showed a significant tumor growth inhibitory effect in
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comparison with the control group from day 9, earlier than the other single-strain treatment
groups. The tumor weights in all groups (control group: 1.76 ± 0.39 g; MG731 group:
0.78 ± 0.29 g; MG5346 group: 0.78 ± 0.19 g; MG4584 group: 0.88 ± 0.33 g; 2Mix group:
0.38 ± 0.33 g; 3Mix group: 0.32 ± 0.22 g) were positively correlated with tumor volumes
(Figure 3c). A steady increase in whole-body weight in all groups was recorded throughout
the experimental period (Figure 3d), indicating that there was no general toxicity caused
by the oral administration of Bifidobacterium or Lactobacillus heat-killed strains.

Figure 1. Cytotoxicity of heat-killed Bifidobacterium and Lactobacillus against human colorectal carci-
noma RKO cells analyzed by MTT assay. (a) Cell morphology and (b) cell viability (%). The scale bar
represents 200 px. Data represent mean ± SD (n = 3), * p < 0.05 vs. control.

3.4. Caspase-9-Dependent Apoptosis in RKO Cell–Derived Tumors Induced by Heat-Killed
Bifidobacterium and Lactobacillus Strains

We investigated the expression of signaling molecules related to apoptosis in the
tumor tissues derived from RKO cells. The caspase cascades, including caspase-8, -9, -3,
and -7 and PARP, are known to be associated with apoptosis in tumors [20]. The ratios of
cleaved caspase-9 to caspase-9 in tumor tissues derived from all treatment groups were
significantly higher than those in the control group, whereas those of caspase-8 differed
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little among all groups (Figure 4a–c). The ratios of cleaved caspase-3 and caspase-7 were
also significantly higher in tumor tissues from all treatment groups than in those from the
control group (Figure 4a,d,e). The ratios of cleaved PARP to PARP were also higher in
tumor tissues from the MG5346, MG4584, 2Mix, and 3Mix groups than in those from the
control group (Figure 4a,f).

Figure 2. Apoptosis induced by heat-killed Bifidobacterium and Lactobacillus in RKO cells analyzed by
flow cytometry. (a) Representative Annexin V and PI staining for apoptosis and (b) total apoptosis
(%). Data represent mean ± SD (n = 3), * p < 0.05 vs. control.

We also confirmed the increase in the levels of cleaved caspase-3 and cleaved PARP by
the IHC staining of tumor tissues derived from RKO cell–implanted xenograft mice that
were administered 2Mix or 3Mix (Figure 5).
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Figure 3. The inhibitory effect of heat-killed Bifidobacterium and Lactobacillus on the growth of RKO
cell-derived tumors in xenograft model mice. BALB/c nude mice were subcutaneously injected
with 1 × 106 RKO cells/mouse into the dorsum next to the right hind leg. The mice were orally
administered drinking water, heat-killed single strains, or their mixtures every day for another 19 days.
(a) Photographs represent tumor size. (b) Tumor growth curves. (c) Tumor weight. (d) Body weight
changes. Data represent mean ± SD (n = 5), * p < 0.05 vs. control. Control, drinking water; MG731, B.
bifidum MG731 (1 × 109 cells/mouse); MG5346, L. reuteri MG5346 (1 × 109 cells/mouse); MG4584, L.
casei MG4584 (1 × 109 cells/mouse); 2Mix, mixture of L. reuteri MG5346 (1 × 109 cells/mouse) and L.
casei MG4584 (1 × 109 cells/mouse); 3Mix, mixture of B. bifidum MG731 (1 × 109 cells/mouse), L.
reuteri MG5346 (1 × 109 cells/mouse), and L. casei MG4584 (1 × 109 cells/mouse).

Figure 4. Protein levels in tumor tissues. After 19 days of treatment with heat-killed single strains or
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their mixtures, proteins were extracted from tumor tissues and analyzed by Western blotting assay.
(a) Western blot image. (a–f) Western blot quantification: (b) cleaved caspase-9/caspase-9, (c) cleaved
caspase-8/GAPDH, (d) cleaved caspase-3/caspase-3, (e) cleaved caspase-7/caspase-7, (f) cleaved
PARP/PARP. Data represent mean ± SD (n = 6), * p < 0.05 vs. control. Control, drinking water; MG731,
B. bifidum MG731 (1 × 109 cells/mouse); MG5346, L. reuteri MG5346 (1 × 109 cells/mouse); MG4584,
L. casei MG4584 (1 × 109 cells/mouse); 2Mix, mixture of L. reuteri MG5346 (1 × 109 cells/mouse) and
L. casei MG4584 (1 × 109 cells/mouse); 3Mix, mixture of B. bifidum MG731 (1 × 109 cells/mouse), L.
reuteri MG5346 (1 × 109 cells/mouse), and L. casei MG4584 (1 × 109 cells/mouse).

Figure 5. Cleaved caspase-3 and PARP in tumor tissues analyzed by immunohistochemistry (IHC).
After 19 days of treatment with heat-killed single strains or their mixtures, tumor tissues were
harvested and stained by IHC. (a) Cleaved caspase-3, (b) cleaved PARP. Black arrows indicate the
dots of cleaved caspase-3 and cleaved PARP (magnification 20× or 40× as indicated). The scale
bar represents 200 px. Control, drinking water; MG731, B. bifidum MG731 (1 × 109 cells/mouse);
MG5346, L. reuteri MG5346 (1 × 109 cells/mouse); MG4584, L. casei MG4584 (1 × 109 cells/mouse);
2Mix, mixture of L. reuteri MG5346 (1 × 109 cells/mouse) and L. casei MG4584 (1 × 109 cells/mouse);
3Mix, mixture of B. bifidum MG731 (1 × 109 cells/mouse), L. reuteri MG5346 (1 × 109 cells/mouse),
and L. casei MG4584 (1 × 109 cells/mouse).

4. Discussion

The present study demonstrates the anti-tumor effect of heat-killed Bifidobacterium
and Lactobacillus bacterial strains on human colorectal carcinoma RKO cells in in vitro and
in vivo xenograft models. The anti-tumor effect of live Bifidobacterium or Lactobacillus strains
has been reported in many studies, but the anti-tumor effects of the heat-killed strains
are yet unclear, especially in human CRC cells. B. bifidum MG731, which had a strong
anti-tumor effect in CRC when administered in combination with PD-1 [21], was used as a
positive control in this study.

Previous studies have reported that the administration 2 × 109 CFU of live probiotic
strains in CRC patients for 12 weeks improved bowel symptoms and quality of life [22].
Moreover, the pre-surgical use of L. acidophilus, L. casei, L. lactis, B. bifidum, B. longum,
and B. infantis mixture promotes the faster return of normal gut function and shorter
duration of hospital stay when used in elective surgery in colorectal cancer patients [23].
Therefore, we used 1 × 108 or 1 × 109 cells to evaluate the cytotoxic effect of heat-killed
strains on RKO cells. In Figure 1, we found a higher cytotoxic effect at 1 × 109 cells/mL
in most of the tested heat-killed strains, although there was some variability. Several
studies have reported that B. bifidum 3440 extract has the highest cytotoxicity (40%) in
comparison with B. longum 3128, B. lactis 5854, and B. infantis in human non-small cell lung
cancer A549 cells [24]. The treatment of human gastric adenocarcinoma with probiotic
L. reuteri showed cytotoxic effects of 74.4%, 66.7%, and 40.8% at the ratios of 1:10, 1:100,
and 1:1000, respectively [25]. Similarly, in our study, the cytotoxicity of B. bifidum MG731



Microorganisms 2022, 10, 533 9 of 11

(37.66%) and L. reuteri MG5346 (54.39%) to human CRC cells was higher than that of other
bacterial strains (Figure 1b). Apoptosis is a controlled event, usually accompanied by
minimal loss of membrane integrity until the late stage or secondary necrosis [26]. We
found that 1 × 109 cells/mL of heat-killed L. rhamnosus MG5200, L. gasseri MG4514, and L.
casei MG4584 significantly induced apoptosis (in about 15% of the cells; Figure 2b).

There was no precise correlation in numerical values between cytotoxicity and the
apoptotic effect of any of the tested heat-killed bacterial strains in our study (Figures 1,2).
We speculate that cancer cell death can be triggered not only by apoptosis but also by other
signaling pathways [27,28]. Additionally, the different ways of measuring cytotoxic activity
and apoptosis could contribute to the numerical variability in our results. However, B.
bifidum MG731 and L. reuteri MG5346, which showed highest cytotoxic activity, statistically
significantly induced apoptosis, and L. rhamnosus MG5200, L. gasseri MG4514, and L. casei
MG4584, which were ranked as the top three strains for apoptosis induction, showed strong
cytotoxicity against RKO cells (Figures 1b and 2b).

Our selection of heat-killed B. bifidum MG731, L. reuteri MG5346, and L. casei MG4584
for an in vivo xenograft model experiment was based on the above in vitro results as well
as companies’ capability of the mass production of bacterial strains. In BALB/c nude mice
subcutaneously injected with RKO, we found a significant inhibition in the growth of CRC
xenograft tumors when selected single heat-killed bacterial strains or their mixtures were
orally administrated (Figure 3). A single administration of each of the three strains inhibited
tumor growth by 15.18%, and each mixture significantly suppressed tumor growth by more
than 61.76% in comparison with the control group. Recently, live or heat-killed L. casei
was reported to protect mice against DMH-induced CRC, which partly agrees with our
in vivo study results [29,30]. For the first time, we report a synergistic inhibitory effect of
heat-killed L. casei MG4584 and L. reuteri MG5346 on CRC growth in a xenograft model,
which suggests that various combinations of parabiotics or probiotics could be screened for
use as therapeutic agents against cancer.

Subsequently, we examined the anti-tumor mechanisms of selected heat-killed bacte-
rial strains in our xenograft model. We found that the significant delay in tumor growth in
xenograft mice treated with heat-killed B. bifidum MG731, L. casei MG4584, and L. reuteri
MG5346 was mediated by the increased levels of caspase-9, -3, and -7 and PARP in tu-
mor tissues derived from xenograft (Figure 4). Caspases, cysteine aspartate proteases,
are major regulators of apoptosis and are classified into initiator caspases and executive
caspases [31]. The initiator caspases, caspase-8 and -9, are activated by death-inducing
signals and subsequent signals that induce the cleavage of caspase-3, -7, and PARP, which
are the executive and terminator caspases [32]. The cleavage of caspases induces apoptosis
and leads to cell death. A recent study reported that the injection of a Lactobacillus-derived
siderophore inhibited 40% of tumor growth in a xenograft model through apoptosis, which
was mediated by the cleavage of caspase-3 and PARP [28], which agrees with our data
in Figure 5. Many in vitro studies suggest that B. bifidum extracts increase the levels of
cleaved caspase-3 and cleaved PARP in A549 and H1299 cells, consequently inducing
apoptosis [21]. L. rhamnosus induces apoptosis through the mitochondrial pathway, as
indicated by cytochrome c release and the cleavage of caspase-9 and -3 in human colorectal
Caco-2 cells [33]. Similarly, we found that heat-killed L. casei MG4584 and L. reuteri MG5346
induce intrinsic apoptosis through the activation of caspase-9, which successively activates
caspase-3 and -7 and PARP. Interestingly, heat-killed L. casei MG4584 and L. reuteri MG5346
did not induce the activation of caspase-8, which was also reported by Altoncy et al. [33].
Heat-killed Lactobacillus have cell wall components such as (lipo)teichoic acids, neutral
and acidic polysaccharides, peptidoglycan, and (surface) proteins. Another recent study
reported that peptidoglycan of L. paracase has anti-cancer activity by inducing caspase-3
activation in vitro and that the combination of Bifidobacteria lipoteichoic acid and 5-FU
significantly inhibits tumor proliferation and induces apparent apoptosis [34,35]. In this
study, it is assumed that the anti-tumor effect of the heat-killed L. casei MG4584 and L.
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reuteri MG5346 is due to lipoteichoic acid, peptidoglycan, and polysaccharides, etc., and
further studies are needed to confirm this.

5. Conclusions

Our study demonstrates that heat-killed Bifidobacterium and Lactobacillus strains induce
the intrinsic apoptosis of human colorectal carcinoma RKO cells in vitro and that heat-
killed L. casei MG4584 and L. reuteri MG5346 have strong anti-tumor effects in an RKO
cell-derived xenograft model through the activation of caspase-9, -3, and -7 and PARP. Our
findings make a strong case for the use of heat-killed L. casei MG4584 and L. reuteri MG5346
as anti-tumor agents in colorectal cancer.
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